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深度学习在地面电气设备状态监测与故障预测中的应用

孟倩文

皖江工学院

摘  要：随着工业系统智能化进程的加快，地面电气设备在生产运行中的状态监测与故障预测愈发重要。

传统依赖经验与规则的监测方法在复杂工况下难以保证准确性与实时性。本文基于深度学习理论，构建融合全

连接神经网络（Fully Connected Neural Network，FCNN）与门控循环单元（Gated Recurrent Unit，GRU）的

综合模型，对地面电气设备运行数据进行特征提取、状态评估与故障预测。研究结果表明，该模型在预测精度、

召回率及稳定性方面均优于单一模型结构，可有效实现设备状态的动态感知与风险预警。研究为工业电气设备

智能运维与预测性维护提供了可行技术路径与实践参考。
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随着工业系统向自动化与智能化加速迈进，地面

电气设备在生产体系中的作用愈加关键。设备运行状

态的稳定与否，直接关系到工业系统的安全性、连续

性与经济性。传统基于人工巡检或经验规则的监测方

法，往往在故障识别和预测的时效性、准确性方面存

在明显不足，难以应对现代工业场景中复杂多变的运

行工况和多源异构数据特征。近年来，深度学习技术

凭借其在语音识别、图像分析和时间序列预测中的卓

越表现，逐渐成为智能运维的重要支撑工具。在地面

电气设备的状态监测与故障预测领域，深度学习通过

端到端的数据驱动方式，实现了特征自动提取与多维

信息融合，不仅提高了识别精度，也强化了对潜在风

险的前瞻性判断。本文基于深度学习技术，结合全连

接神经网络（Fully Connected Neural Network，FCNN）

与门控循环单元（Gated Recurrent Unit，GRU）的优势，

构建了一种面向地面电气设备的智能状态监测与故障

预测模型。通过实验验证与系统部署分析，探讨其在

数据处理、模型集成与应用价值等方面的综合效能，

为工业设备的智能化管理提供理论支撑与实践参考。

一、深度学习在地面电气设备状态监测中的关键

技术

深度学习作为人工智能的重要分支，能够通过多

层非线性映射关系，从复杂数据中自动学习特征表示。

在地面电气设备的运行监测中，它不仅能够捕捉连续

信号的动态特征，还能在大规模数据环境下实现精准

预测。

（一）全连接神经网络（FCNN）的特征学习机制

全连接神经网络是深度学习最基础的网络结构之

一。其核心思想是建立输入层、隐藏层与输出层的密

集连接，使网络能够在端到端的训练中完成非线性映

射关系的学习。针对电气设备运行数据（如电压、电

流、温度、振动信号等），FCNN 通过多层加权计算

和激活函数的非线性变换，能够自动提取高维特征并

识别潜在异常。该结构适合处理静态或准静态的设备

状态数据，能够有效反映设备健康度的长期变化趋势。

在模型优化过程中，FCNN 常采用均方误差作为损失

函数，以梯度下降法更新权重，减少预测误差。通过

增加隐藏层深度与神经元数量，可提升模型的特征表

达能力，从而增强对复杂非线性关系的拟合效果，为

设备健康评估提供坚实基础。

（二）门控循环单元（GRU）的时间序列建模

能力

门控循环单元是循环神经网络（Recurrent Neural 

Network‌，RNN）的改进形式，特别适用于处理时间序

列信号。其核心机制在于通过更新门与重置门控制信

息的流动，实现长期依赖特征的有效保留。对于电气

设备而言，运行状态的变化往往呈时间相关性，GRU

可捕捉不同时间步间的特征关联，从而实现对设备运

行趋势的动态追踪与预测。GRU 较传统 RNN 结构更

为简洁，参数量更少，计算效率更高，且有效缓解了

梯度消失问题。在地面电气设备监测中，GRU 能够学

习电气信号的周期性与波动特征，从而提前识别出故

障征兆，为维护人员提供及时预警依据。

（三）深度学习技术融合的必要性

单一的神经网络结构往往难以兼顾静态特征提取

与动态变化预测。FCNN 侧重静态数据的全局特征学

习，而 GRU 擅长捕捉时间序列变化。将两者融合，可

实现静态与动态信息的协同建模，使模型在处理不同

项目名称：深度学习在电气设备状态监测中的应用探究，项目编号：WG25049。



第 1期 孟倩文：深度学习在地面电气设备状态监测与故障预测中的应用

·83·

理论视野

类型的电气信号时具有更强的泛化性与稳定性。这种

融合模式能够提升设备运行状态识别的精度，并显著

增强故障预测的前瞻性。

二、基于深度学习的状态监测与故障预测实验研究

（一）实验总体设计

地面电气设备在长期运行中受多种因素影响，运

行数据呈现高维度、非线性与时序相关性。为实现对

设备健康状态的精准识别与未来风险预测，本研究构

建了“数据采集—预处理—特征提取—模型训练—结

果预测”的实验体系。通过传感器采集设备的电压、

电流、温度与振动数据，结合深度学习算法对信号特

征进行自动提取与融合分析。模型采用全连接神经网

络（FCNN）与门控循环单元（GRU）相结合的结构：

前者用于全局特征学习与静态状态识别，后者侧重时

间序列建模与趋势预测。二者融合后，可同时捕捉长

期变化规律与瞬时动态特征，从而提高模型对复杂工

况的适应性与预测精度。

（二）数据采集与预处理

实验数据来自多台电气设备的运行记录，涵盖电

流、电压、温度及振动信号。数据经多通道传感器实

时采集并上传至数据库。为保证数据质量，首先进行

缺失值填补、异常点剔除与噪声平滑处理，随后使用

归一化方法统一量纲，确保不同特征间的权重平衡。

数据按7∶2∶1比例划分为训练集、验证集和测试集，

覆盖轻载、额定负载与过载三种工况，以验证模型在

多场景条件下的泛化能力。

（三）模型构建与训练

实验在 TensorFlow 框架下实现模型训练。FCNN

部分包括三层隐藏层，用于提取非线性特征；GRU 部

分包含两层循环结构，负责学习时间依赖特征。输入

为多维特征矩阵，输出为设备健康评分与未来故障 

概率。

训练阶段采用 Adam 优化算法，初始学习率设为

0.001，损失函数为均方误差与交叉熵的加权形式，

以兼顾分类精度与预测稳定性。为防止过拟合，引入

Dropout 与 L2 正则化约束，并在验证集损失不再下降

时启用早停机制。每轮训练后利用混淆矩阵计算准确

率、召回率与 F1 值，对模型性能进行动态评估。

（四）实验结果与性能分析

实验结果显示，融合模型在整体性能上明显优于

单一结构。单独采用 FCNN 时，模型能够较好地识别

设备的静态健康状态，但在处理随时间变化的动态信

号时准确率略有下降；而仅使用 GRU 模型，虽然在时

间序列预测方面表现优异，但对静态特征敏感度不足，

容易出现局部过拟合现象。

综合模型在准确率、召回率及 F1 值 3 个核心指

标上均实现显著提升。其中，准确率达到 0.90，召回

率为 0.94，F1 值达到 0.96，整体性能较单模型提升约

5%~8%。尤其在异常样本较少的小样本工况下，融合

模型仍保持稳定输出，体现出较强的泛化能力与鲁棒

性。

从运行表现来看，该模型能够在设备温度异常、

电流突升、电压波动等情况下提前发出预警信号，预

警时间平均提前 30 秒至 2 分钟不等，为现场维护提供

了充分响应空间。与传统监测系统相比，模型在误报

率方面降低约 40%，在故障响应时间上缩短近一半。

进一步分析表明，FCNN 层在特征提取过程中捕

捉了电气信号的长期趋势，而 GRU 层则有效学习了时

间依赖特征，两者在信息融合后形成的高维表示空间，

使得模型能更精准地识别潜在异常模式。通过反向可

视化技术对特征权重进行解释发现，模型在振动信号

和温度特征维度上的敏感度最高，这与设备故障的物

理机理相一致，证明模型具备较好的可解释性与工程

可行性。

（五）对比与验证

为验证模型的有效性，研究还与支持向量机

（SVM）、随机森林（RF）和卷积神经网络（CNN）

进行了对比。结果显示，传统算法在复杂信号特征识

别方面表现不足，F1 值普遍低于 0.85；CNN 虽在空

间特征提取上具有优势，但在时间序列学习上不及

GRU。综合来看，FCNN-GRU 融合模型在特征表达能

力、故障识别精度及鲁棒性方面均占明显优势，为电

气设备的智能监测与预测性维护提供了可靠技术支撑。

三、模型优化与工程部署分析

（一）系统集成架构设计

在工业现场的实际部署中，深度学习模型需与现

有的设备管理系统实现高效融合。系统通常由感知层、

分析层和决策层构成。感知层负责实时采集信号并完

成初步处理；分析层嵌入深度学习模型，对设备状态

进行评估与预测；决策层则将分析结果转化为运维策

略，实现报警与调度自动化。部署过程中需兼顾实时

性与计算效率。轻量化模型可布置在边缘设备上执行

快速推理，而云端系统则承担全局模型训练与参数更

新任务，实现云—边协同架构。该模式既保障预测响

应速度，又便于系统的持续优化与跨场景推广。

（二）模型动态优化与在线学习

由于设备运行环境与工况不断变化，模型性能可

能随时间退化。为此，引入增量学习与在线优化机制。
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增量式训练允许模型在不完全重训的情况下利用新数

据更新权重，从而保持对最新工况的适应性。配合概

念漂移检测算法，可实时监测数据分布变化，一旦检

测到性能下降，系统即自动触发再训练或参数调整过

程。此外，主动学习机制通过识别模型预测中不确定

性较高的样本并请求人工标注，可在最小化标注成本

的前提下持续提升模型精度。这种“自学习—自修正”

模式显著提高了系统的智能化水平。

（三）模型性能评估与工程价值

深度学习模型的应用价值不仅体现在技术精度，

更在于其对运维效率与经济效益的综合提升。从系统

指标看，模型在高负载环境下依然保持稳定识别性能，

尤其在异常工况与极端信号条件下表现出较高可靠性。

在经济层面，通过提前预警与按需维护机制，系统显

著减少了停机损失与备件消耗。与传统定期检修模式

相比，维护成本平均下降 30% 以上，设备使用寿命

得到延长。同时，基于模型输出的风险评分与预警等

级，可实现智能决策支持，辅助管理者进行维护调度

与资源配置，形成“数据—模型—决策”的闭环管理 

体系。

四、结论

深度学习为地面电气设备的状态监测与故障预测

提供了全新的技术路径。通过融合全连接神经网络与

门控循环单元模型，本文实现了对设备运行状态的精

准识别与趋势预测，在实验与应用中均表现出较高的

准确率与稳定性。

在工程实践中，基于深度学习的监测系统不仅显

著提升了运维效率与经济效益，也推动了工业设备管

理模式的智能化转型。未来研究可进一步探索轻量化

网络、增强学习和多源数据融合技术，构建更具自适

应能力与可解释性的模型体系，以实现电气设备全生

命周期的智能健康管理。
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